A VAN DER CORPUT LEMMA FOR THE p-ADIC NUMBERS
نویسنده
چکیده
We prove a version of van der Corput's Lemma for polynomials over the p-adic numbers.
منابع مشابه
Multidimensional Decay in Van Der Corput Lemma
In this paper we present a multidimensional version of the van der Corput lemma where the decay of the oscillatory integral is gained with respect to all space variables, connecting the standard one-dimensional van der Corput lemma with the stationary phase method.
متن کاملA Ramsey Theorem on Semigroups and a General van der Corput Lemma
A major theme in arithmetic combinatorics is proving multiple recurrence results on semigroups (such as Szemerédi’s theorem) and this can often be done using methods of ergodic Ramsey theory. What usually lies at the heart of such proofs is that, for actions of semigroups, a certain kind of one recurrence (mixing along a filter) amplifies itself to multiple recurrence. This amplification is pro...
متن کاملRegularities of the distribution of abstract van der Corput sequences
Similarly to β-adic van der Corput sequences, abstract van der Corput sequences can be defined by abstract numeration systems. Under some assumptions, these sequences are low discrepancy sequences. The discrepancy function is computed explicitly, and the bounded remainder sets of the form [0, y) are characterized.
متن کاملRegularities of the Distribution of Β-adic Van Der Corput Sequences
For Pisot numbers β with irreducible β-polynomial, we prove that the discrepancy function D(N, [0, y)) of the β-adic van der Corput sequence is bounded if and only if the β-expansion of y is finite or its tail is the same as that of the expansion of 1. If β is a Parry number, then we can show that the discrepancy function is unbounded for all intervals of length y 6∈ Q(β). We give explicit form...
متن کاملSharp Van Der Corput Estimates and Minimal Divided Differences
1. Sublevel set estimates The importance of sublevel set estimates in van der Corput lemmas was highlighted by A. Carbery, M. Christ, and J. Wright [3], [4]. We find the sharp constant in the following sublevel set estimate. We will use this in Section 4 to prove an asymptotically sharp van der Corput lemma. The constants Cn take different values in each lemma. Lemma 1. Suppose that f : (a, b) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003